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INTRODUCTION

Since it was first reported in 1997 that a sheep had been 
cloned (Wilmut et  al., 1997), more than 10 additional 
mammalian species have been cloned successfully using 
somatic cell nuclear transfer (SCNT). The success of 
SCNT gives promise to applications such as species pres-
ervation, livestock propagation, and cell therapy for medi-
cal treatment by nuclear transfer embryonic stem cells 
(NT-ESCs) (Wakayama et  al., 2001, 2005a). While clon-
ing efficiencies can range from 0% to 20% when meas-
ured as offspring born healthy as a proportion of the total 
SCNT embryos transferred, efficiency rates of only 1–2% 
are typical for mice. These inefficiencies have limited such 
practical applications of SCNT. Moreover, many abnor-
malities in mice cloned from somatic cells have been 
reported, including abnormal gene expression in embryos 
(Boiani et al., 2002; Bortvin et al., 2003; Kishigami et al., 
2006a), abnormal placentas (Wakayama and Yanagimachi, 
1999; Tanaka et al., 2001), obesity (Tamashiro et al., 2000, 
2002), and early death (Ogonuki et al., 2002). These have 
been major issues for SCNT technologies to overcome.

Many trials attempting to overcome the inefficiencies 
of SCNT have been reported, and these can mainly be 
divided into four types as follows.

Type 1: improvement by optimizing SCNT protocols in 
each condition for oocyte activation (Kishikawa et al., 
1999; Terashita et  al., 2012), timing of oocyte activa-
tion (Wakayama and Yanagimachi, 2001a), timing of 
enucleation or injection of nucleus (Wakayama et  al., 
2003), and culture medium SCNT embryos (Boiani 
et al., 2005; Campbell et al., 2007), as well as a serial 
cloning (Ono et al., 2001).
Type 2: improvement by modified donor cell prepara-
tion, including optimized cell cycle, chemical treatment 
of donor cells (Enright et  al., 2003), or optimizing 
donor-cell types (Inoue et  al., 2003; Wakayama and 
Yanagimachi, 2001b; Wakayama et al., 2005b).
Type 3: improvement by chemical treatment of recon-
structed oocytes.
Type 4: improvement by gene manipulation (Inoue et al., 
2010; Matoba et al., 2011) or optimizing the genotype of 
donor cells (Inoue et al., 2003; Wakayama et al., 2005b).
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Although more or less significant improvement of 
SCNT has been reported in each type, the recent dramatic 
success achieved by treatment of reconstructed oocytes 
with histone deacetylase inhibitor (HDACi) has confirmed 
that SCNT can be improved at a practical level by using 
chemical agents.

ESTABLISHMENT OF A CONCEPT FOR 
DIRECT TREATMENT OF SCNT EMBRYOS 
WITH CHEMICAL AGENTS

The inefficiency of SCNT has been supposed to be 
attributed to epigenetic errors such as DNA methyla-
tion (Cibelli, 2007). Consistently, accumulating data have 
shown abnormal epigenetic modifications (Dean et  al., 
2001; Kang et  al., 2001; Santos et  al., 2003; Ohgane 
et  al., 2004; Yamagata et  al., 2007; Inoue et  al., 2010), 
gene expression during pre- or post-implantation develop-
ment (Humphreys et al., 2002; Suemizu et al., 2003; Inoue 
et al., 2006) and even after birth (Kohda et al., 2005), and 
chromosome segregation possibly by a particular epige-
netic status of the centromere in SCNT (Mizutani et  al., 
2012). Therefore, it would be natural to aim at improve-
ment of SCNT by correcting epigenetic modifications with 
chromatin remodeling agents.

The first success in direct treatment of SCNT embryos 
with chemical agents occurred accidentally in 2001, when 
1% dimethyl sulfoxide (DMSO) in the activation medium 
was found to improve significantly the frequency of devel-
opment to the blastocyst stage in vitro (Wakayama and 
Yanagimachi, 2001a), demonstrating that nuclear reprogram-
ming can be enhanced artificially using chemical treatment, 
and establishing a concept of direct treatment of SCNT 
mouse embryos with chemical agents. Although the detailed 
mechanism underlying improvement by DMSO is unclear 
yet, DMSO treatment affects the DNA methylation sta-
tus at multiple loci (Iwatani et al., 2006), and also possibly 
improves SCNT through changing epigenetic modifications.

that enhances the pool of acetylated histones (Yoshida 
et al., 1990) and DNA demethylation (Hattori et al., 2004). 
Enright et al. found that 0.08-μM TSA treatment of donor 
cells increased blastocyst development compared to con-
trols (35.1% vs 25.1%; Enright et al., 2003). However, to 
date, chemical treatment of donor cells has shown minimal 
improvement in SCNT.

On the other hand, regardless of the report on DMSO 
as early as 2001, direct treatment of SCNT embryos 
with TSA was not instantly successful. In 2006, two 
groups independently discovered the optimum concen-
tration, timing, and period of TSA treatment for cloned 
mouse embryos (Figure 11.1) (Kishigami et  al., 2006b; 
Rybouchkin et al., 2006). Eventually this method led to a 
greater than five-fold increase (e.g., from 0.3% to 6.5%) 
in the success rate of mouse cloning (Figure 11.2; see also 
Table 11.1, below) and a doubling in the rate of estab-
lishing ntES cell lines (Kishigami et  al., 2006b). Based 
on these studies, the best protocol for TSA treatment in 
mice is: (1) reconstructed oocytes should be continuously 
exposed to TSA from the time point of oocyte activation 
for at least 10 h, but before the two-cell stage (Figure 11.3); 
(2) TSA concentrations of 5–50 nM as are recommended, 
as TSA becomes effective from 5 nM but shows toxicity 
at 500 nM (Figure 11.4). Notably, the optimal time win-
dow for TSA treatment is narrow and specific, such as the 
first 10 h after oocyte activation. This finding reveals that 
this time period is crucial for success of reprogramming 
of SCNT embryos, which determines their developmental 
fate, at least in mice. Further, this time period corresponds 
to that before the initiation of zygotic gene activation 
(ZGA), implying that this enhancement of reprogram-
ming by TSA is related to change of epigenetic state but 
is not directly coupled with transcriptional activity during 
this time period. TSA treatment for longer or shorter time 
periods, or even different timing, significantly reduces the 
effectiveness of TSA treatment on developmental potential. 
It should be also noted that TSA treatment enables around 
40% of reconstructed oocytes to produce ntES cells using 
B6D2F1 cumulus cells. Considering the establishment 
rate of normal ES cells from fertilized embryos, more than 
half of somatic cells should have the potential to be repro-
grammed into ntES cells, supporting the stochastic model 
for reprogramming rather than the elite model (Yamanaka, 
2009), in which most or all cells have the potential to 
become at least pluripotent. Further, recently it has been 
demonstrated that the gene expression profile in cloned 
neonatal mice shows more normalization by TSA treat-
ment; the total gene expression profile of the TSA clones 
resembles that of the pups born following fertilization by 
ICSI (Kohda et al., 2012). Thus, TSA treatment evidently 
enhances nuclear reprogramming to increase the success 
rate of cloning.

The first success in direct treatment of SCNT embryos them-
selves with chemical agents occurred accidentally in 2001, 
when 1% dimethyl sulfoxide (DMSO) in activation medium 
was found to improve significantly the frequency of devel-
opment to the blastocyst stage in vitro.

DISCOVERY OF THE OPTIMAL 
TREATMENT OF SCNT EMBRYOS WITH 
TRICHOSTATIN A

Trichostatin A (TSA), a histone deacetylase inhibitor 
(HDACi), is representative of a chromatin remodeling agent 
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FIGURE 11.1  An experimental scheme of TSA treatment. According to the standard procedure of mouse cloning, donor nuclei from somatic cells 
are injected into enucleated oocytes. These reconstructed oocytes are activated by culture in the Ca2+-free CZB medium including 5-mM Sr2+, as well 
as TSA for TSA treatment except for the 14-h TSA treatment. After 6 h activation, the activation medium was changed to KSOM medium. For 10 h (or 
up to 20 h) of TSA treatment, activated oocytes are cultured in KSOM medium including TSA for another 4 h (another 14 h) and transferred into KSOM 
without TSA. These cloned embryos are cultured in KSOM until subject to embryo transfer into the surrogate mother (2nd day), examination of blasto-
cyst formation (3rd or 4th day) or establishment for NT-ES cells (3rd or 4th day).

(A) (B)

(C) (D)

FIGURE 11.2  Production of “normal” 
cloned mice after TSA treatment. TSA 
treatment often led to multiple conceptions. 
In one case, five fetuses in one foster were 
seen at full term (A). Produced cloned mice 
treated by TSA showed no obvious abnor-
malities with the exception of a large pla-
centa (B), as also seen in “normal” clones 
without TSA treatment. (C) TSA treatment 
also led to the success of cloning ICR mice 
from adult cumulus cells. After cesarean 
section, pups showed normal appearance but 
had large placentas (C). All the pups were 
weaned normally and on time (D).



TABLE 11.1  Summary of Effect of Histone Deacetylase Inhibitor (HDACi) Treatment on Embryonic Development in Each Speciesa

Species Donor cell (strain) HDACi Conc. Exposure  
Time (h)

Development  
to Blastocyst  
(vs control)

Development  
to Term  
(vs control)

Description References

Cow Fibroblast TSA 50 nM 13 36% vs 30% N.A. No improvement Iager et al., 2008

Fibroblast TSA + 5-aza 50 nM + 
10 nM

12(TSA) + 
72(5-aza)

38% vs 13% N.A. Ding et al., 2008

Fibroblast TSA 5 nM 20 31% vs 16% N.A. Donor-cell line 
dependent

Akagi et al., 2011

Fibroblast TSA + 5-aza 50 nM + 
10nM

12(TSA) + 
72(5-aza)

N.A. 13% vs 3% Wang et al., 2011

Fibroblast TSA 50 nM 14 42% vs 22% 6.5% vs 7.4% 
per blast

100% vs 50% 
postnatal survival

Sawai et al., 2012

Mouse Cumulus (B6D2F1) TSA 5 nM 10 75% vs 23 % 6.5% vs 0.3% Kishigami et al., 2006b

Fibroblast (ICR) TSA 5 nM 10 N.A. 4.2% vs 0% Kishigami et al., 2007

Cumulus (C57BL/6) SCR 250 nM 10 N.A. 2.3% vs 0% Better than TSA Van Thuan et al., 2009

Cumulus (C3He) SCR 250 nM 10 N.A. 0.9% vs 0% Better than TSA Van Thuan et al., 2009

Cumulus (DBA/2) SCR 250 nM 10 N.A. 6.5% vs 0% Better than TSA Van Thuan et al., 2009

Cumulus (129/Sv) SCR 250 nM 10 N.A. 9.8% vs 2.4% Better than TSA Van Thuan et al., 2009

Cumulus (B6D2F1) TSA +5-aza 100 nM +  
10 nM

8 69% vs 69%  
(vs TSA only)

1% vs 13% (vs 
TSA only) at 
E10.5

Tsuji et al., 2009

Cumulus (B6D2F1) SAHA 1.0 μM 10 70% vs 31% 9.4% vs 2.6% Better than TSA Ono et al., 2010

Cumulus (B6D2F1) VPA 2 mM 10 57% vs 51% 8% vs 7% 
(BD129F1)

No effect Ono et al., 2010

Cumulus (B6D2F1) Ox 1.0 μM 10 63% vs 50% 7.5% vs 2.6% Better than TSA Ono et al., 2010

Cumulus (B6D2F1) CBHA 20 μM 10 70% vs 33% 3.6% vs 0.8% Better than TSA Dai et al., 2010

Pig Fibroblast TSA 50 nM 24 46% vs 18% N.A. Zhang et al., 2007

Fibroblast TSA 37.5 nM 24 81% vs 54% N.A. Live piglets produced Li et al., 2008



TABLE 11.1  Summary of Effect of Histone Deacetylase Inhibitor (HDACi) Treatment on Embryonic Development in Each Speciesa

Fibroblast (NIH 
miniature pig)

SCR 500 nM 14–16 21% vs 9 % 1.3% vs0% Zhao et al., 2009

Fibroblast  
(Landrace)

TSA SCR 50 nM
500 nM

10 23% vs 10 %
25% vs 11 %

0.8% vs0.4 %
1.6% vs 0.4%

Zhao et al., 2010

Fibroblast Bone  
marrow

TSA 10 ng/ml 10 45% vs 24 %
30% vs 27 %

11% vs 10 %
5% vs 0 %

Dependence on the 
nuclear cell type

Lee et al., 2010

Fibroblast VPA 5 mM 24 41% vs 23% N.A. Increasing ICM cell 
no.

Kim et al., 2011

Fibroblast TSA 50 nM 24 30% vs 15% N.A. 11% vs 0% NT–ES 
lines

Vassiliev et al., 2011

Rabbit Fibroblast TSA 100 nM 6 45% vs 23 % N.A. Shi et al., 2008

Cumulus (Hycole 
hybrid)

TSA 5 nM 10 79% vs 80 % 5% vs 3% No adulthood after 
TSA treatment

Meng et al., 2009

Rat Fibroblast (SD and 
Wistar)

TSA 50 nM 10–14 N.A. 0% vs 0% Sterthaus et al., 2009

Inter-species (oocyte donor)

Rabbit–Human Fibroblast TSA 100 nM 3 5% vs 2 % N.A. No significant 
difference

Shi et al., 2008

Black-footed 
cat–Domestic 
cat

Fibroblast TSA 50 nM 20 3.3% vs 3.3 % 0% vs 0% Gomez et al., 2011

Long-tailed 
macaque–pig

Fibroblast TSA 10 nM 48 23% vs 10 % N.A. Qin et al., 2012

TSA, trichostatin A; SCR, Scriptaid; SAHA, suberoylanilide hydroxamic acid; VPA, valproic acid; Ox, Oxamflatin; 5-aza, 5-aza-2′-deoxycytidine; CBHA, m-carboxycinnamic acid bis-hydroxamide. 
aThe following species were studied: cow, mouse, pig, rabbit, and rat.
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Can TSA treatment of animal cloning be used for any 
type of cells in mouse? Significant improvement, to a 
greater or lesser degree, has been observed in cloning from 
any somatic cells, including cumulus, fibroblast, spleen, 
and neural stem cells, in mice. However, so far no suc-
cess has been reported in improving ES-cell cloning by 
TSA treatment; rather, it appears to sabotage development 
(Kishigami et al., 2006b). The genomes of ES cells should 
already have an optimal epigenetic state at a reduced 
DNA methylation state which may be optimal for cloning. 
Therefore, TSA treatment in ES cloning may be toxic, as is 
high-dose TSA treatment in somatic cloning. In fact, TSA 
treatment following somatic cloning also led to a success 
rate of 6–7%, which is comparable to that of ES cloning 

(~5%) (Wakayama et al., 1999). Therefore, it may be pos-
sible to interpret that TSA treatment of somatic cloning 
brings transferred somatic nuclei close to ES-like nuclei.

SCNT USING HDACi TREATMENT

Before the discovery of TSA treatment, most cloned 
mice were limited to hybrid strains and had never been 
cloned from outbred or inbred strains (Wakayama and 
Yanagimachi, 2001b; Inoue et  al., 2003). Following the 
establishment of optimal TSA treatment conditions, it was 
found that TSA treatment was applied for producing cloned 
mice even from an outbred, supposedly “unclonable,” 
strain (Kishigami et al., 2007), demonstrating that apparent 
“unclonability” of certain mouse strains does not indicate 
that nuclear reprogramming of those nuclei is impossi-
ble. Regardless, most of the important mouse strains have 
still not been cloned successfully. Subsequently, Scriptaid, 
another HDACi, was found to increase cloned embryo 
development not only in hybrid but also in inbred strains, 
and this allowed us to generate full-term offspring from 
several inbred mouse strains, such as C57BL/6 and C3H/
He (Figure 11.5; Table 11.1) (Van Thuan et al., 2009).
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FIGURE 11.3  Effect of TSA treatment on development of cumulus 
clones, and optimization of exposure time period and concentration 
of TSA. The development % is shown as the ratios of (expanded) blas-
tocysts after another 72 h, developed from two-cell cloned embryos 24 h 
after activation. To optimize the exposure time of TSA, 0, 6, 10, 14 and 
20 h time periods were used as in Figure 11.1; 14-h TSA treatment was 
the same as 20-h treatment except for the use of activation medium with-
out TSA.
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FIGURE 11.4  Optimal concentration of TSA for production of 
cloned mice. The effect of different concentrations of trichostatin A 
(TSA) on the efficacy of mouse cloning was examined by SCNT. When 
5 or 50 nM of TSA was used, the success rate of cloned mice was signifi-
cantly increased compare to control.

Reprogramming by TSA is related to a change of epigenetic 
state but not directly linked to transcriptional activity.

Although TSA application resulted in great improvements in 
SCNT cloning in mice, the effects of TSA treatment on clon-
ing efficiency in other species are still controversial.

Although TSA application resulted in great improve-
ments in SCNT cloning in mice, the effects of TSA treat-
ment on cloning efficiency have been controversial in cow 
(Iager et al., 2008; Wu et al., 2008), pig (Li et al., 2008; 
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FIGURE 11.5  Production of cloned mice from “unclonable” strains 
using histone deacetylase inhibitors (HDACis). Without HDACi treat-
ment, cloned mice could be obtained from the hybrid and 129/Sv strains, 
but with a low success rate. However, when Scriptaid was used, the over-
all success rate was increased even from inbred strains.

Yamanaka et  al., 2009), rabbit (Shi et  al., 2008; Meng 
et al., 2009), and rat (Sterthaus et al., 2009) (Table 11.1). 
Moreover, some groups have reported that TSA treatment 
had detrimental effects on the in vitro and in vivo develop-
ment of the SCNT embryos (Wu et al., 2008; Meng et al., 
2009). In experiments on rabbits, all cloned offspring 
treated with TSA died within 19 days of birth, whereas 
the untreated control clones grew to adulthood (Meng 
et al., 2009). On the other hand, it is known that the drug 
Scriptaid acts as an HDACi but is less toxic than TSA (Su 
et  al., 2000). Using this drug, Zhao and colleagues man-
aged to improve the success rate of pig cloning to full term 
(Zhao et al., 2009). To our knowledge, the effects of TSA 
treatment on full-term development have not been deter-
mined in any species other than the mouse. These results 
suggest that although the use of HDACi drugs can enhance 
reprogramming in cloned embryos, their toxicity means 
that the effects depend on the sensitivity of the donor cell 
type, strain, or species.

THE POSSIBLE MECHANISM 
UNDERLYING HDACi TREATMENT TO 
ENHANCE REPROGRAMMING

Although the underlying mechanism of how HDACi treat-
ment improves cloning efficiency remains unknown, it 
is thought that it can induce hyperacetylation of the core 
histones, resulting in structural changes in chromatin 
that permit transcription and enhanced DNA demethyla-
tion of the somatic cell-derived genome following SCNT 
(Kishigami et  al., 2006b), which is a necessary part of 
genetic reprogramming (Simonsson and Gurdon, 2004). 
In fact, several reports have clearly shown that HDACi 

treatment improved histone acetylation (Wang et al., 2007; 
Yamanaka et  al., 2009), nascent mRNA production (Van 
Thuan et  al., 2009), and gene expression (Tsuji et  al., 
2009) in a manner similar to that in normally fertilized 
embryos.

However, how histone methylation is modified in TSA-
treated cloned embryos is not completely understood. 
Recently, TSA treatment was found to cause an increase 
in chromosome decondensation and nuclear volume in 
SCNT-generated embryos, similar to embryos produced 
by intracytoplasmic sperm injection (ICSI) (Bui et  al., 
2010). Histone acetylation was increased in parallel with 
chromosome decondensation. This was associated with a 
more effective formation of DNA replication complexes 
in treated embryos. Interestingly, the proportion of SCNT-
generated embryos showing an asymmetric expression 
of nascent RNA between blastomeres was significantly 
reduced in the TSA-treated group compared with controls 
at the two-cell stage. These results suggest that the incom-
plete and inaccurate genome reprogramming of SCNT-
generated embryos was improved by TSA treatment.

THE TARGETS OF HDACi TO ENHANCE 
NUCLEAR REPROGRAMMING

In general, the HDAC enzymes are divided into five cat-
egories: class I (HDAC1, 3, and 8), class IIa (HDAC4, 
5, 7, and 9), class IIb (HDAC6 and 10), class III (SIRT 
1–7), and class IV (HDAC11) (Blackwell et al., 2008). As 
shown in Table 11.1, so far seven classes of HDACi have 
been examined in our laboratory. TSA, Scriptaid, SAHA, 
and oxamflatin are inhibitors for class I and IIa/b HDACs 
(Marks et al., 2003; Zhang and Dent, 2005; Mukhopadhyay 
et  al., 2006; Blackwell et  al., 2008; Chuang et  al., 2009; 
Codd et al., 2009; Kuhn et al., 2009). These significantly 
improved cloning efficiency. On the other hand, APHA 
is an inhibitor of class I and IIa/b HDACs, but is greater 
than 10-fold more active against HDAC3 (class I) and 
HDAC6 (class IIb) than the other HDACs (Mai et  al., 
2003; Blackwell et al., 2008). VPA is an inhibitor for class 
I and IIa HDACs (Chuang et  al., 2009). However, these 
two drugs did not improve the mouse cloning success rate 
(Figure 11.6) (Ono et al., 2010).

Sirtinol is an inhibitor of class III HDAC, but its effect on 
cloning was very limited (Hirata, 2008). Thus, inhibition of 
class IIb HDACs (HDAC6 and 10, but most likely HDAC10) 
appears to be very important for improving the success rate 
in cloning mice (Table 11.2). It is known that the class IIb 
HDACs preferentially not only target nuclear histone deacet-
ylase but also play important roles in the regulation of heat 
shock protein (HSP)-mediated vascular endothelial growth 
factor receptors (Park et  al., 2008). These other pathways 
could have negative effects on embryo development or on 
complete genomic reprogramming following SCNT.
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TABLE 11.2  Summary of Improvements in Mouse Cloning Outcome and Characteristics of Each Histone Deacetylase 
Inhibitor (HDACi)

Class of HDAC Type of HDAC Inhibitor

TSA SCR SAHA Ox APHA VPA SIRT

Class I HDAC 1, 2, and 8 ● ● ● ● ○ ● ×

Class I HDAC 3 ● ● ● ● ● ● ×

Class IIa HDAC 4, 5, 7, and 9 ● ● ● ● ○ ● ×

Class IIb HDAC 6 ● ● ● ● ● × ×

Class IIb HDAC 10 ● ● ● ● ○ × ×

Class III SIRT 1–7 × × × × × × ●

Improvement in cloning? Yes Yes Yes Yes No No Slight

Reference* 1 2 3 3 2 3 4

TSA, trichostatin A; SCR, Scriptaid; SAHA, suberoylanilide hydroxamic acid; Ox, oxamflatin; VPA, valproic acid; APHA, aroyl pyrrolyl hydroxamide; SIRT, 
sirtinol; UP, unpublished observation; ●, inhibit normally; ○, 10-fold lower; ×, no effect.
*1, Kishigami et al. (2006b); 2, Van Thuan et al. (2009); 3, Ono et al. (2010); 4, Hirata (2008).
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FIGURE 11.6  Effects of histone deacetylase inhibitor (HDACi) treatment on mouse cloning. Without HDACi treatment, cloned mice could be 
obtained but with a low success rate. When trichostatin A (TSA), Scriptaid (Sc), suberoylanilide hydroxamic acid (SA), or oxamflatin (Ox) were used, 
the success rates were increased with both BDF1 and BD129F1 strains; however, when valproic acid (VPA) or aroyl pyrrolyl hydroxamide (AP) were 
used, the overall success rate was not increased.

WHY DO CLONED EMBRYOS REQUIRE 
HDACi TREATMENT FOR BETTER 
GENOMIC REPROGRAMMING?

In nature, the oocyte cytoplasm contains reprogramming 
mechanisms, such as histone acetylation or DNA dem-
ethylation, that convert the sperm and oocyte nuclei to a 

totipotent state (Mayer et al., 2000; Wang et al., 2007; Feil, 
2009). However, it is not yet clear whether these repro-
gramming factors are sufficient to reprogram the somatic 
cell nucleus, because the potential reprogramming machin-
ery of the oocyte cytoplasm is prepared for the receipt of a 
gametic nucleus, not a somatic cell nucleus. In general, it is 
considered that the incomplete reprogramming of somatic 
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cell nuclei following SCNT arises from poor reprogram-
ming in the oocyte. However, we now think that the oocyte 
cytoplasm might reprogram the somatic cell nucleus too 
strongly, or that the somatic cell nucleus is more sensi-
tive to oocyte reprogramming factors than is the gametic 
cell nucleus. Therefore, by inhibiting a particular HDAC – 
especially a class IIb HDAC – during reprogramming, the 
donor nuclei in our studies were possibly reprogrammed 
more correctly (Kishigami et al., 2006b; Van Thuan et al., 
2009), resulting in a higher success rate for cloning.

FURTHER STUDIES OF AGENTS THAT 
MAY IMPROVE SCNT

The DNA methyltransferase inhibitor 5-aza-2′-
deoxycytidine (5-aza-dC), is one of the major agents 
affecting epigenetic memory to reduce DNA methylation. 
Although most attempts to improve SCNT using 5-aza-
dC have ended in failure, such as 5-aza-dC treatment of 
oocytes and donor cells having a negative effect due to tox-
icity (Jones et al., 2001; Vignon et al., 2002; Enright et al., 
2003; Shi et al., 2003; Tsuji et al., 2009), a combination of 
5-aza-dC with TSA successfully increased preimplantation 
development of cloned bovine embryos and production of 
cloned calves, but did not do so in mouse (Table 11.1). In 
addition to histone acetylation and DNA methylation, it was 
reported that Vitamin C (also known as L-ascorbic acid or 
L-acerbate), which improves iPS-cell generation (Esteban 
et  al., 2010), enhances in vitro and in vivo development 
of porcine somatic cell nuclear transfer embryos more 
than two-fold (Huang et al., 2011). Although Vitamin C is 
well known to be an antioxidant, it is supposed to enhance 
nuclear reprogramming via several pathways, including his-
tone demethylation and p53 repression (Shi et  al., 2010). 
However, the mechanism in SCNT and its application 
for other species remains unclear to date. Further study is 
required to reveal the role of Vitamin C in SCNT.

Vitamin C, which improves iPS cell generation, also 
enhances in vitro and in vivo development of porcine 
somatic cell nuclear transfer embryos.

CONCLUDING REMARKS

The advent of cloning from adult-derived cells in 1997 
marked a new departure in the study of key biologi-
cal problems in NT biology (Wilmut et al., 1997), finally 
developing iPS cells technology in just one decade. 
Thus, reprogramming technologies have evolved rap-
idly. However, the reprogramming mechanism underly-
ing SCNT still remains largely unclear after more than 15 
years. The success in significant improvement of SCNT by 

HDACi has provided many clues in understanding the rea-
son for the inefficiency of SCNT. Future study should be 
focused on identifying target HDACs of HDACis, as well 
as the target proteins of HDACs and their roles of embry-
onic development. Literature regarding successful improve-
ment of SCNT development using agents other than 
HDACi is still limited. Further, this type of approach to 
find chemical agents to enhance reprogramming in SCNT 
could lead to understanding of the reprogramming mecha-
nism in SCNT, thus making SCNT a truly practical tool.
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